Grazing affects methanotroph activity and diversity in an alpine meadow soil.
نویسندگان
چکیده
The role of methane-oxidizing bacteria (MOB) in alpine environments is poorly understood, but is of importance given the abundance of alpine environments and the role of MOB in the global carbon cycle. Using a combination of approaches we examined both seasonal and land usage effects on the ecology of microbial methane oxidation in an alpine meadow soil. Analysis of the abundance and diversity of MOB demonstrated that the abundance and diversity of the dominant type II MOB, predominantly Metylocystis and relatives, was only influenced by season. Conversely type Ia MOB abundance was significantly affected by season and land usage, while diversity changes were effected predominantly by land use. Assessment of methane oxidation potential and soil physical properties demonstrated a strong link between type Ia MOB abundance and methane oxidation potential as well as a complex series of relationships between soil moisture, pH and MOB abundance, changing with season. The results of this study suggest that, while type II MOB, unaffected by land use, represent the dominant MOB, Methylobacter-related type Ia MOB appear to be responsible for the majority of methane oxidation and are strongly affected by the grazing of cattle.
منابع مشابه
Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow.
Warming and grazing significantly affect the structure and function of an alpine meadow ecosystem. Yet, the responses of soil microbes to these disturbances are not well understood. Controlled asymmetrical warming (+1.2/1.7°C during daytime/nighttime) with grazing experiments were conducted to study microbial response to warming, grazing and their interactions. Significant interactive effects o...
متن کاملEffects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow
Livestock grazing is one of the most important factors influencing the above-ground community composition and structure in a natural grassland ecosystem. Different grazing intensities also have the potential to alter soil C and N storage substantially in grasslands. We conducted a field community study and soil analyses to determine the effects of different grazing intensities on the above-grou...
متن کاملGrazing Intensity Impacts on Carbon Sequestration in an Alpine Meadow on the Eastern Tibetan Plateau
Livestock grazing has the potential to substantially alter carbon (C) storage in grassland ecosystem. In this study, we evaluated the soil-plant system C (0-30cm) under three different grazing intensities by yaks (light: 1.2, moderate: 2.0, and heavy: 2.9 yaks/ha) in alpine meadow on the eastern Tibetan Plateau. Soil organic C at 0-30cm depth and total plant components C increased from light gr...
متن کاملResponse of Soil Respiration to Grazing in an Alpine Meadow at Three Elevations in Tibet
Alpine meadows are one major type of pastureland on the Tibetan Plateau. However, few studies have evaluated the response of soil respiration (R(s)) to grazing along an elevation gradient in an alpine meadow on the Tibetan Plateau. Here three fenced enclosures were established in an alpine meadow at three elevations (i.e., 4313 m, 4513 m, and 4693 m) in July 2008. We measured R s inside and out...
متن کاملEffects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow
Grazing exclusion (GE) has been widely considered as an effective avenue for restoring degraded grasslands throughout the world. GE, via modifying abiotic and biotic environments, inevitably affects phenological development. A five-year manipulative experiment was conducted in a Tibetan alpine meadow to examine the effects of GE on phenological processes and reproductive success. The study indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental microbiology reports
دوره 1 5 شماره
صفحات -
تاریخ انتشار 2009